
Presentation Interfaces and Automation
A Case Study of Development of a System

For The Father’s House

Vacaville, CA

By Bill Lyons

1. The Problem

a. Evolution of a system

i. When TFH first “graduated” from an overhead projector in 1999, it began with

one portable projector connected to one laptop computer running PowerPoint in

single screen mode. Since the church was renting a community center, it all had to

be portable. Operators only had to learn to connect the two together via a

relatively short VGA cable, aim and focus the projector, and run PowerPoint. A

simple setup, but with many limitations. One of these was the need to “freeze” or

“blank” the projector in order to make any change to the presentation without the

audience seeing the computer desktop.

ii. VCR was added, thus requiring an additional cable, composite video, and meant

switching inputs of the projector to select the source – causing two blinks to be

visible to the audience.

iii. A new video driver was found, enabling the laptop to run in dual screen mode.

This added the advantage that the operator could modify the PowerPoint

presentation without the audience seeing it. It also added the complexity of

teaching operators how to run in dual screen mode, which few had ever seen

before. Only a few operators could be found that were up to the challenge of

multitasking under the pressure of a live presentation, as well as the weekly setup

and teardown of the equipment.

iv. In 2003, a new sanctuary was under construction. A more professional

presentation was a must. A dual projector system was desired, along with multiple

sources, including a DVD player and a video camera. To enhance the presentation

operation the software of choice was Media Shout. In order to enable a smooth

transition between sources, an Analog Way Smart Fade seamless video

scaler/switcher tied all the inputs together. Because it was to be a permanent

installation, the operators no longer needed to know how to setup or tear down the

equipment. However, this was more than offset by having so many inputs to

control.

v. In 2005, a second video camera, video mixer in a complete video control suite,

satellite receiver, and 3
rd

 projector were added. It was desired to have the 3
rd

projector operate independently from the other two, with the same seamless

flexibility of the two side screens. The first thought was to use another identical

Smart Fade unit. However, after learning that the Smart Fade was being

discontinued, and being replaced with the Octo Fade, the Octo Fade was chosen.

b. The resulting challenge

i. The operator must control three separate pieces of software (Media Shout and

remote control software for the two video switchers), and use a stack of infrared

(IR) remote controls for various devices, while simultaneously communicating via

intercom with a video camera operator in a separate room, and the lighting and

sound operators in the same booth, and still pay attention to the contents of the

service and frequent interruptions from ushers, pastors, and others.

ii. Certain times in the service require the operator to do multiple things flawlessly

and in rapid succession.

1. Example 1: during the announcements, when having Media Shout on two

screens, and video camera on the third, on cue the operator must

a. select the Smart Fade software and switch to the DVD player

(mouse),

b. select the Octo Fade software and switch to the DVD player

(mouse),

c. and start the DVD playing with its IR remote,

d. while coordinating the timing with the lighting and sound

operators,

e. all this in 1 or 2 seconds to make a professional transition.

2. Example 2: during worship, with camera 2 selected and focused on a

worship leader, and lyrics on the center screen, and an overlay of lyrics

and camera on the side screens, the pastor suddenly takes the microphone

and starts speaking, and then wants to read from a prearranged scripture.

The operator must:

a. Direct the camera operator to switch to camera 1 and find the

Pastor

b. Select the Smart Fade software and fade the input to the camera

output

c. Select the Octo Fade software and fade the input to the camera

output.

d. Select the Media Shout software and locate the scripture and select

it..

e. Select the Smart Fade software and fade the input to Media Shout.

iii. The need to simplify the operation becomes very clear.

c. The Goal

i. Ability to preprogram a timed sequence of events for repeatable playback.

ii. A single floating (always on top) control panel allowing immediate access to all

the video inputs for both video switchers.

iii. Visual indication of the current status of each video switcher.

iv. Simplified operation, improving presentation quality by less experienced

operators.

2. The Solution

a. Girder. Please see the Girder documentation for details and instructions. This summary

is only to provide the reader with enough information to understand how the pieces of the

solution work together.

i. What is Girder? Well, the short answer is "glue." It takes inputs, what it calls

"Events", from various sources, depending on the plugins, can make decisions

based on those inputs, and sends outputs, again via plugins. That may sound

trivial, but when you have completely unrelated things that you want to talk to

each other, it is VERY cool. I think the name "Girder" is symbolic - the internal

structure that holds a building up. It's not really pretty, and is hidden when

complete, but is very useful and efficient.

ii. Commands. A Girder command performs some sort of action. There are many

different types of actions to choose from, including operating system functions,

sending messages to applications, variable manipulation and decision making

scripts with a language called Lua, actions with various Girder plugins, and many

more.

iii. Events. A Girder event is a trigger causing a command or group of commands to

take action. It is usually caused by some sort of input, but can also be triggered

from a Lua script.

b. Media Shout

i. Media Shout and the outside world. Media Shout 2.5 itself does not have any

direct way to send commands or raise events in other programs. At the time of

this writing, version 3 is expected to have the same limitation.

ii. Media Shout and Flash. One workaround is to use Macromedia Flash. A Flash

programmer could perform operating system commands including some of the

functions of this solution. The Flash file would then be played from Media Shout.

However, Flash is a language I have never had the time to learn. Even if I did, I

do not believe it would have the simplicity, versatility and expandability of this

solution. That is a subject for others to explore.

iii. Media Shout and MIDI. Since MIDI is normally used to control audio devices,

synthesizers and the like, Media Shout plays MIDI files just like it plays .wav

files or .mp3 files. This gives us a useful little loophole.

c. MIDI

i. Background. MIDI is an acronym for Musical Instrument Digital Interface.

Before beginning this project, that was about as much as I knew. The following is

all based on my limited research to accomplish this project, and is the sum total of

what I know about MIDI now. If you are a MIDI expert, and I have some of it

wrong, please forgive me.

ii. MIDI is a “language” or “protocol” which consists of codes symbolizing tracks,

channels, ports, timings and events. These pieces work together to produce music

in synthesizers. This allows the computer to reproduce the sounds comprising the

music through the instructions, rather than recording the actual waveform

digitally, saving huge amounts of disk space. This is all very nice, and way over

my head. But fortunately it is all irrelevant to this project.

iii. SysEx. There is one other type of command included in the MIDI standard:

system exclusive commands, or “SysEx.” A SysEx is used to initialize, configure,

or setup a particular device. A SysEx command or event is a series of

hexadecimal bytes, beginning with an F0 start byte, and an F7 as a terminator

byte. MIDI files (.mid) are created and edited by software known as a

“sequencer.” I found it a bit of a challenge to find a MIDI sequencer that allowed

direct control of the SysEx command contents. Some had no ability at all; others

only import predefined SysEx commands for specific manufacturer’s devices.

One program that did what I wanted I found at

http://www.greatfreeware.com/Multimedia_and_Graphics/MIDI_Players_and_Ed

itors/701.html. Their website at www.winjammer.com does not even seem to refer

to the software, so I don’t know if is even for sale anymore. But the demo version

is capable of creating the MIDI files with the needed SysEx commands, so I

haven’t looked further. The actual contents of the SysEx commands do not really

matter to Girder, so I simply created a bunch of MIDI files, each with a different

SysEx command – a single hexadecimal byte – from 00 through 4F. The raw file I

simply named “event xx.mid” where “xx” is the hex byte. Then, as I assigned

them to the various Girder commands, I renamed them to represent the function

they perform, so it is simple to insert the appropriate command in Media Shout. I

have included a folder with the raw MIDI files which you can use as a starting

library.

iv. MIDI playback device. In order to play a MIDI file, it must be sent to some sort

of device. Normally this is the internal sound card. However, that won’t get the

command into Girder. Girder itself is not a Windows MIDI driver, so we need an

intermediate interface to translate it: a loopback program.

v. MIDI loopback program LoopBe. LoopBe takes a MIDI input from one

program, in this case Windows, and sends it to another program, in this case the

Girder plugin.

1. Download LoopBe from one of many websites. The first one that was

listed in my Google search was at

http://www.topshareware.com/LoopBe1-download-17853.htm.

2. Install it.

3. Launch it.

4. Open the Sounds and Audio Devices Properties dialog box from your

Windows Control Panel, and set the MIDI music playback default device

to LoopBe. (This is from Windows XP. Other versions may be different.)

http://www.greatfreeware.com/Multimedia_and_Graphics/MIDI_Players_and_Editors/701.html
http://www.greatfreeware.com/Multimedia_and_Graphics/MIDI_Players_and_Editors/701.html
http://www.winjammer.com/
http://www.topshareware.com/LoopBe1-download-17853.htm

vi. MIDI plugin for Girder. The MIDI SysEx plugin is actually part of the Creative

Remotes SBLive LiveDrive plugin (sblive.exe) which you can download from the

Promixis Girder Plugin download page at

http://www.promixis.com/downloads.php?mode=list&prodName=Girder&lucCod

e=800.

1. Download, and install it.

2. Launch Girder (if already running, exit and restart Girder to recognize the

new plugin).

3. Open the Girder Settings dialog box (File/Settings…)

4. Select the Plugins tab.

5. Check the box selecting the MIDI SysEx plugin.

6. Click Apply.

7. Click on the MIDI SysEx plugin item again. The Settings button should

now be enabled.

8. Click the Settings button.

9. Check the box activating the LoopBe internal MIDI device.

10. Click OK.

http://www.promixis.com/downloads.php?mode=list&prodName=Girder&lucCode=800
http://www.promixis.com/downloads.php?mode=list&prodName=Girder&lucCode=800

11. Click OK on Settings.

vii. Learn a MIDI event in Girder

1. Create a command in Girder. Any event can trigger any command. To

make this a simple and clear example, just make the command open a

Notepad window:

a. Click Edit/Add Command

b. Click the OS tab

c. Select the Execute command

d. Type Notepad in the File textbox

e. Click Apply

f. Test it to be sure it is working so far

i. Right-click the command

ii. Select Test command

iii. A new Notepad window should open

2. Insert one of the MIDI SysEx files into a Media Shout script.

3. In Girder, with the test command highlighted, click the “Learn Event”

button (be sure “All” is selected in the dropdown box adjacent to this

button).

4. Fire the MIDI cue in Media Shout.

5. Girder should show the MIDI SysEx command in the LED display in

Girder as shown below. In this case the sample was “event 15.mid”

6. The next time the MIDI cue in Media Shout is fired, a Notepad window

should open.

7. You now have Media Shout talking to the outside world!

d. Infrared (IR) devices

i. How they work. Wireless remote control devices most commonly use some form

of infrared (IR) emitter and detector. They transmit a series of pulses in a specific

pattern. Different brands use different coding schemes and frequencies. To

facilitate a system like we need here, we are basically building the ultimate

“universal remote.”

ii. Devices. First, you need an IR transceiver. There are a few on the market. The

one I like is the USB-UIRT from http://www.usbuirt.com. It is reliable, cost

effective, good compatibility, easy to use, and has good support. This plugs into

the USB port on a computer. It has a driver that must be installed, and of course

you need the Girder plugin.

iii. Making it work in Girder. The documentation that comes with the device details

the precise method for the particular device. But they all share some basics:

1. Enable the Girder plugin by checking its box in the Plugins tab in the

Settings dialog box and clicking Apply.

2. Create a command.

3. Select the Plugins tab and select the IR device plugin.

4. Click the Settings button and learn the code. The dialog box for each

brand of IR device will be different. The USB-UIRT dialog is shown here.

However, each of them should have something similar to the following

http://www.usbuirt.com/

functions:

a. Click Learn

b. Place the remote control that came with the device you are trying

to control (DVD player remote control for example) in close

proximity (2 to 4 inches) to the IR transceiver device (USB-UIRT

in this example), aiming it at the device sensor. I found that putting

it at about a 60 degree angle increased reliability for this process.

c. Press the button on the remote control for the function you are

trying to learn, like “Play” or “Power” for example. If you have the

units aimed properly, you should see a series of numbers displayed

in the dialog box. This can take a bit of practice at first. Try

holding down the button and moving the remotes around till you

get a reliable stream of numbers. The device should automatically

detect and adjust to the proper frequency

d. Test the code. Most units will have a button on the dialog box

enabling you to test the learned code. Aim the IR device at the unit

to be controlled (DVD player, for example), and click the “Test”

button. If it was learned correctly, the device should perform the

desired action. If it doesn’t, repeat (a) through (d) until it works.

e. Close the dialog box, saving the code – usually by clicking “OK”.

5. Now, test the Girder command.

a. Select the Girder command.

b. Aim the IR device at the unit to be controlled (DVD player, for

example).

c. Select “Command/Test Command” from the menu. If it was

learned correctly, the device should perform the desired action. If it

doesn’t, repeat step 4 above.

6. You now have a working Girder command. All you need is an event

attached to it to trigger it. You can simply attach the MIDI event learned

in part c.vii above, and/or any other event you desire.

7. Repeat this sequence for each command you wish to learn for each device

you wish to control.

iv. Distance considerations. The distance limitations of USB devices prevent

placing the IR device a great distance (more than 10 to 15 feet) from the

computer. If you want to control a device a greater distance away, like, for

example, the front of the church, try using an external IR emitter (the USB-UIRT

and Tira both have external emitter jacks). Online discussions

(http://166.70.183.44/phpBB2/viewtopic.php?t=96) indicate that these may be

extended a considerable distance, although exactly how far isn’t really clear.

Distribution hubs are also available (http://www.smarthome.com/8191A.html).

(This site also has IR emitters and lots of other devices that may work with

Girder.) In the coming weeks, I will be experimenting with some of these, and

will update this document at that time.

e. Serial plugin for Girder. The generic Serial Port device driver is available for download

from the Girder Plugins download page at

http://promixis.com/downloads.php?mode=list&prodName=Girder&lucCode=800.

Install it per the instructions.

i. Setting up.

1. Enable the “Generic Serial Support” plugin via the Settings dialog box,

plugins tab, and click Apply.

2. Select “Generic Serial Support” again, and click the Settings button.

3. You will need to setup each serial device you wish to control.

a. Click New.

b. Choose a name carefully – things break if you change the name.

c. Set the appropriate baud rate, parity, port, etc. per your equipment.

If you don’t know the proper settings for this, you may need to

refer to the manufacturer’s documentation or contact the

manufacturer.

http://166.70.183.44/phpBB2/viewtopic.php?t=96
http://www.smarthome.com/8191A.html
http://promixis.com/downloads.php?mode=list&prodName=Girder&lucCode=800

ii. Outputs. Output to a serial device is relatively easy. The main problem I

encountered with output is that the device frequently returned a bunch of

information. I did not need most of this information, but I had to insert a bunch of

delays between my output commands to allow the unit time to respond before

sending the next command.

1. Create a Girder command.

2. Select the Plugins tab.

3. Select the Generic Serial Support plugin.

4. Select Settings. The following dialog box appears:

5. The button at the bottom, with “Serial Port:” beside it enables you to select

the device you setup in step i.3 above.

6. Replace “Place Command Text Here” with the character string you wish

to send to your device. For example, with the Octo Fade, to switch to input

number one, simply send a “1c”. This was considerably more complicated

for the Smart Fade, which requires separate commands to select the input,

and to perform the switch. For example, to fade to input #1, “1i” is the

first output, then a 100ms delay, then “8192y” is the second output.

7. Note that you may need to adjust the Transmit Message Definitions in the

Girder Settings dialog box (see i.3 above) as needed for your device

application. Especially consider the Terminator and Hex->Bin conversion

settings.

iii. Input. Serial device input is a bit more complicated. A lot depends on the format

and predictability of the serial devices response structure. There are two primary

ways to handle input:

1. Events. This would be similar to learning a MIDI or keyboard event –

click Learn Event, and send the event string. This requires that the event

string being sent from your device be short, simple, predictable and

controllable. The strings I received from the Octo Fade and Smart Fade

had none of these characteristics, so I gave up on this method for my

application.

2. Receive script. This is set in the Receive Message Definitions dialog box

in Girder Settings (see i.3 above).

a. Enable reception of character events.

b. Set it to Variable length commands.

c. For my application, both the Octo Fade and Smart Fade have a

carriage return/line feed (CRLF) after each response. This

translates to a hexadecimal 0d0a. I elected to have the plugin strip

this, simplifying the parsing script.

d. Check the Script box.

e. Click Define.

f. The script is written in the Lua language. Links to the Lua

language reference and Girder extensions to it can be found in the

Girder Forums and in the Help menu. SerialValue is a system

variable passed to this script by the plugin, and contains the string

up to the terminator. It is simply a matter of parsing and testing this

string and doing something with it. You can set variables to be

tested and used in other commands, or trigger events immediately.

My scripts use a combination of these techniques.

f. Video Control Panel - a C# application

i. Purpose. The original intent of this project was to create all the necessary

commands in Media Shout to control IR devices, video switchers, etc. These

could be in scripts or in the Box. However, I discovered a couple of factors that

made this as the sole solution undesirable:

1. We need to be able to send commands to video switchers during songs,

however, there is a bug in Media Shout 2.5.5 which causes video

backgrounds to go blank (black) if executing an audio cue during a Lyric

cue with a video background.

2. The lack of visual indication of the status of the video switchers.

3. What was really needed was:

a. a simple “control panel” – a floating (always on top) toolbar that

made the essential video switcher functions available at all times,

b. without needing to switch software screens,

c. provide immediate and direct access to both video switcher

functions and Media Shout,

d. still allow scripting of Media Shout,

e. and visually display the video switcher status, even when that

status was changed by some means other than the control panel

software, like Media Shout or manually pressing switcher buttons.

Thus was born the Video Control Panel. It is written in C#: a new Visual

Studio.NET language, which combines the simplicity of use of Visual Basic, and

the power and syntax of C++.

ii. Output from Video Control Panel. Because Video Control Panel runs on the

same machine as Girder, the most direct, simplest, and fastest means to send

commands to Girder is via the Girder Component Object Model. Examples of the

code to do this can be found in the source code files included. COM events

received in Girder are “learned” just like MIDI or IR events, and attached to the

desired Girder command(s). Fortunately, Girder allows as many events to trigger

the same command or multi-command as you want, so the same command can be

triggered by MIDI, serial port, or Video Control Panel.

iii. Input to Video Control Panel. Unfortunately, the Girder COM objects at the

time of this writing do not provide sufficient feedback to report the video switcher

status we need. Fortunately, Girder provides many other options. The Girder

Internet Event Client and Server seemed like a good choice, however it has a

complicated token/response security protocol that seemed like overkill for this

application, since these applications run on the same machine. Using Lua, it is

relatively simple to open a socket to Video Control Panel using the IP loopback

address (127.0.0.1), and send a short message. Video Control Panel has a timer

that checks the socket frequently for incoming messages, as indicated by the “♦”

symbols, and interprets them to update the status indicators.

g. Putting it all together – odds & ends

i. In this application, both video switchers require RS-232 connections.

Unfortunately, the computer only had a single RS-232 comm port. It is becoming

increasingly difficult to find a simple RS-232 port card for the PCI bus. This is

old technology by today’s standards. Fortunately there are other options. What I

was looking for was an Ethernet IP to RS-232 port adapter or a USB to RS-232

adapter. I tried a USB to RS-232 adapter made by Belkin. This was a complete

failure. When the drivers were loaded, and the first command sent to the RS-232

port, the USB keyboard and mouse ceased to function. I also tried an Ethernet to

RS-232 adapter made by StarTech. This worked, but was not stable. I repeatedly

experienced the infamous Blue Screen of Death (BSOD). A colleague alerted me

to another brand of Ethernet to RS-232 adapter, called Moxa (www.moxa.com).

This didn’t turn up in the cursory Google search, but has turned out to be very

reliable. We have been using the Moxa adapter for two or three months with zero

BSOD’s or failures of any kind.

ii. The biggest complication in the development of this system was the complexity of

the command protocol used by the Smart Fade video switcher. This was

especially exacerbated by the desire to benefit from the manual fade ability to

overlay camera image and Media Shout output (or half-fade). Resolution of this

http://www.moxa.com/

problem took about four weeks of “spare time” programming and testing – about

40 hours of work.

iii. In an effort to expand the flexibility of the system, including showing two

different text messages on two different screens at once, I added a second dual-

screen video card to the computer. This gives us up to four different video

outputs. By doing this, we can use both Media Shout and PowerPoint at the same

time, and another output for expansion or other custom software, each displayed

on a different screen.

1. The primary output, screen 1, is the control screen for Media Shout and

Video Control Panel. Screen 2 is the Media Shout display screen, and is

the primary input for both video switchers. Screen 3 is used primarily as

the PowerPoint display screen and input 7 to the video switchers. Screen 4

is currently seldom used, but can be connected to input 8 of the Octo Fade

video switcher on demand.

2. This screen 4 output will be used for the first time to overlay the names of

people being baptized over a camera image of the baptistery for the center

screen, while worship lyrics from Media Shout will be displayed on the

side screens. The software for the baptism names is custom software

which communicates via IP sockets over a wireless Ethernet connection.

A user will enter names of those being baptized in a laptop down front by

the baptistery. Those names will be sent via IP to the computer running

Media Shout and another piece of custom software which receives the

names and displays them on monitor output 4. Monitor output 4 is put in

title mode on the video switcher, overlaying it with another input,

specifically, a video camera.

iv. As shown in the sample, various MIDI events for IR devices and serial devices

can be combined with specified timings and the Video Control Panel operating

simultaneously. “Sides…” in Video Control Panel and Media Shout cues refer to

switching the side video screens and “Center…” refers to the center video screen.

During announcements we typically keep a camera shot on the center screen and

information slides on the side screens, except when prerecorded videos (usually

on DVD) play while offering is being collected.

3. Next steps. Several things are planned to expand this system:

a. Lighting system. TFH uses WholeHog PC 2 software, by Flying Pig Systems, to control

the lighting system. It supports keyboard macros to perform complex tasks including

multiple lights and timings. Theoretically, by running another copy of Girder on the

lighting computer, making an IP socket connection from the copy of Girder on the Media

Shout computer, and using Girder to emulate keystrokes to trigger lighting system

macros, Media Shout should be able to trigger complex lighting changes with minimal

effort and impact on the lighting system operation.

b. Projector control. By having Girder turn on and off the projectors (and plasma screen), I

want to eliminate the problem where some novice operators forget to turn off projectors,

thus leaving them on for days on end. This will involve IR distribution to multiple

outputs over distances of up to 200 feet, and power control modules.

c. Video camera system control. Theoretically, Girder could control both the remote

control camera system (Panasonic RP-605) and video mixer (MX-70). This is not

practical for large multi-operator services, but could be very useful in smaller services

with limited available operators.

4. Summary. With enough ingenuity, time, and patience, a very effective system can be automated,

improving presentation quality, reducing errors, in a very cost-effective manner, all with Girder

as the center.

Analog Way Smart Fade

Loopbe

Midi loopback

Midi

Midi

Button Events

COM

Feedback for

button status

IP

Loopback

127.0.0.1

Serial

TFH Video Control System

Basic Block Diagram

RS-232

USB
IP

DVDVCR
Satellite

Receiver

Extron

Scaler

Girder

C# App

Media Shout

Analog Way Octo Fade

Wholehog PC

Lighting

system

RS-232

Moxa

NPort

server

IP

IR Receiver/

Transmitter

SMB 413

Smart Fade

Camera

control

4 way

Splitter

Scaler

VCR

DVD

Player

Satellite

Receiver

PHILIPS

To Plasma monitor

To Right projector

To Left projector

To Center projector

Rack #2

PHILIPS PHILIPS

Camera control

House monitor/modulator

Cam Ctrl Preview
Component Vid Mix output

RS-232

Octo Fade

SMB 413

RS-232

CATV
Sat Chnl 3

1 23 45 67

1 23 4 5 6 7

8

Moxa

IP-serial

Ethernet

Hub

To Lighting

To network

To Video mixer

Rack #1

Composite Vid Mix preview
Video

Room

Scaler

PHILIPS PHILIPS

PHILIPS

PHILIPS

PHILIPS PHILIPS

Video Mixer

Black Burst

Generator
RP605

Camera

control

 Video Loft

15 pin VGA

5 coax VGA

Single coax

Cat 5

S-video

DVD Recorder

G/L

Control
G/L

C - video
SDI

SDI

Control
G/L

C - video

Control

From scaler – Smart Fade output

Composite to Vid Mix preview monitor

SMB 413

Cam Ctrl Preview monitor

Component to SMB 413 – Vid Mix

To center projector

RS-232

Outputs

Inputs

PHILIPS

Control
G/L

C - video
SDI

Camera

1

Camera

2

Preview Program
House/

Security

Security system
Modulator/CATV system

Camera

3

Camera 1

Camera 2

Camera 3

PHILIPS

Control
G/L

C - video

Camera 3

SDI

Camera

4

From scaler – cptr output

DVD Player

